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FOREWORD 

This work is an interim report on studies of a fundamental nature concerning 
the transfer of energy from shock waves into the internal modes of molecules in 
solid explosives and has application to the study of initiation and shock 
sensitivity of explosives.  The work is supported principally by Air Force 
Office of Scientific Research Project/Task 2301/A6, AFOSR-MIPR-82-00004. 
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CHAPTER 1 

INTRODUCTION 

OBJECTIVE 

This is an interim report on work which, it is hoped, will lead to a 

greater understanding of how the energy from a shock wave is transferred to the 
internal vibrational modes of molecules in solid explosives.  Thus, the work 
should be applicable to the study of the initiation and shock sensitivity of 
explosives.  If we could, for example, predict shock induced energy transfer 
rates for particular types of bonds, then we could design energetic materials 
with preferred initiation and sensitivity characteristics. 

HISTORY 

In 1979, D. J. Pastine and co-workers pointed out that because many 
explosives have weak intermolecular bonds and strong covalent intramolecular 
bonds the average frequency of intramolecular vibrations (internal mode or 
optical mode vibrations), w0, would be much higher than the average frequency of 
intermolecular (lattice mode or acoustic mode) vibrations, uja, with the ratio 
w0/u>a typically of the order of ten.*  Thus, the immediate effect of a shock on 
such materials would be to increase the temperature of the acoustic vibrational 

branch while leaving the optical branches at the initial temperature.  The 
relaxation time required before the internal molecular temperature reaches a 
critical value sufficient for the shock to grow to detonation would be 
sufficiently long so as to be comparable to and indeed determine the shock pulse 
duration required to produce detonation at a given shock pressure.  In other 
words, the relaxation time for thermal equilibration of the internal modes is 
the controlling factor in the initiation of reactions.  Using a simple classical 
mass and spring model, Pastine et al. estimated that, at a shock temperature of 
500°K, the lower limit to the acoustic/optical relaxaLion time is of the order of 
several microseconds for systems in which the acoustic frequencies wa are around 
10iJ rad/sec and the optical mode frequencies u0 are around 10 

H  rad/sec.  They 

^-Pastine, D. J., Edwards, D. J. , Jones, H. D. , Richmond, C. T. , and Kim, K. , 
"Some New Concepts Relating to the Initiation and Failure of Detonable 
Explosives," in High Pressure Science and Technology, Vol. 2, ed by 
K. D. Timmerhaus and M. S. Barber, Plenum, New York, 1979. 
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also predicted that the relaxation times would be very sensitive functions of 
the frequency ratio w0/i»)a with the relaxation times decreasing by four orders 
of magnitude when the ratio decreases from 10 to 6.  Thus, the very lowest 
frequency intramolecular modes, which are typically bending rather than 
stretching modes, should be the most important in the relaxation process. 

The work of Pastine, et al., was followed by that of E. T. Toton who 
developed a more refined quantum mechanical description which exploited the 
disparity between intra- and inter-molecular mode vibrational frequencies.* The 
results of Toton's calculations also pointed toward the importance of the lowest 
frequency intramolecular modes in the relaxation process.  In this work, we will 
develop Toton's model, calculate shock induced internal mode transition rates 
for nitromethane, and attempt to relate our results to critical shock initiation 
data for nitromethane. 

CHARACTERIZATION OF THE SHOCK 

When a shock wave travels through a solid material, it excites the lattice 
normal vibrational modes to higher levels or, in other words, creates acoustic 
phonons.  The shock also compresses the solid, increasing the frequency of the 
acoustic modes. We wish to calculate the rate at which acoustic mode energy is 
transferred to the molecular internal modes (relaxation rate).  For this 
purpose, it is assumed that the distribution of acoustic mode energy relaxes to 
a thermal distribution in a time which is short compared to the time required to 
create a significant number of optical (internal mode) phonons.  Thus, one 
immediate effect of the shock is to raise the temperature of the acoustic modes 
while leaving the internal modes "cold." The non-radiative transition rates 
between internal mode levels then give  an estimate of the rate at which the 
internal modes relax to the new, higher temperature.  Later, we will need to 
determine the change in the average acoustic mode frequency produced by the 
shock.  This can be deduced approximately from the compression by integrating 
the Grüneisen parameter along the shock Hugoniot.  Hence, in this model, the 
effect of the shock can be characterized by two quantities, the compression and 
the acoustic mode temperature produced by the shock. 

ACOUSTIC MODES THERMALIZE ON A PICOSECOND TIME SCALE 

The assumption of rapid thermalization of the acoustic modes compared to 
the internal modes is not unreasonable since internal mode frequencies are 
generally much higher than lattice mode frequencies and this mismatch should 
greatly reduce the rate of energy transfer between lattice and internal modes. 
From the work of Van Vleck, we can estimate that the acoustic modes should 
thermalize on a picosecond time scale.•  Van Vleck computed the rate of energy 
transfer between lattice oscillators due to anharmonic perturbations when 
different portions of the frequency spectrum are not in thermal equilibrium. 

*Toton, E. T., NSWC/WO, unpublished. 

^Van Vleck, J. H., "Calculation of Energy Exchange between Lattice 
Oscillators," Physical Review, 59, 730 (1941). 
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His result for the transition rate from level n to level n-1 for a particular 
lattice oscillator when the temperature of the main body of lattice oscillations 
is at a temperature T is 

Vn-1 * nD(T/TD)
2 VD (1) 

where vn is the Debye frequency, Tp is the Debye temperature, and D is a 
constant characteristic of the solid.  The value of D is about 10"^  sec^ 
for typical solids.  Equation (1) is valid for T > Tn.  For n=l, T=300°K, 
and VQ ~ 3xl0^2 Hz, Equation (1) gives transition lifetimes of the order 
of 10~12 seconds. 

BORN-OPPENHEIMER APPROXIMATION APPLICABLE TO INTERNAL MODES 

Van Vleck used the usual first order perturbation theory to calculate the 
transition rate.  While this is satisfactory in the case of lattice relaxation, 
it will prove unsatisfactory, in most cases, for lattice-internal mode relaxation 
since internal mode frequencies may be an order of magnitude greater than 
lattice mode frequencies.  An exchange of energy between lattice and internal 
modes which creates, for example, one optical phonon will involve the 
annihilation of five, ten, or more acoustic phonons.  To determine the 
transition rate in this case would require a fifth, tenth, or greater order 
perturbation calculation.  Thus, Toton* developed a Born-Oppenheimer formalism 
analogous to the adiabatic approximation used in treating the coupling of 
localized electronic states  to  lattice vibrations-* and similar to a formalism 
described by Lin.   In this formalism, the lattice modes are considered the 
slow subsystem components and the internal modes are considered the fast 
subsystem components.  The approximation gets better as the disparity between 
internal and lattice frequencies increases. 

NON-ADIABATIC OPERATOR INDUCES NON-RADIATIVE INTERNAL MODE TRANSITIONS 

In the Born-Oppenheimer approximation, the total Hamiltonian H of the 
system is separated into two parts, the adiabatic part Hand the non-adiabatic 
part«*-.  The Born-Oppenheimer states are eigen-solutions ofH.  The non-adiabatic 
part «C can be considered an interaction which induces non-radiative transitions 
between the stationary Born-Oppenheimer states. 

"Toton, E. T., NSWC, unpublished. 

-^Perlin, Yu. E., "Modern Methods in the Theory of Many-Phonon Processes," 
Soviet Physics-Uspekhi, 6, 542 (1963). 

^Lin, S. H., "Theory of Vibrational Relaxation and Infrared Absorption in 
Condensed Media," J. Chem. Phys. , 6_5, 1053 (1976). 

-n^i-r  -rr -t       -n • ~M -i  n ii r m •  ••   *-»- m •_ 
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AN APPROXIMATE EXPRESSION FOR THE NON-RADIATIVE TRANSITION RATE 

In order to obtain an axpresion for the non-radiative transition rate 

between internal mode levels, we expand the interatomic potential in a series of 
terms up to the third order in the vibrational normal coordinates.  The order of 
magnitude of the third order coefficients is obtained from dimensional arguments 
to be described later.  In addition, we make an approximation of the Condon type 
in which we assume that certain internal mode matrix elements do not depend on 
acoustic mode coordinates.  We also assume that the acoustic modes can be 
characterized by a single average frequency which we will refer to as the Debye 
frequency.  Then, isolating a single internal mode and ignoring the interaction 
between internal modes, we obtain (from the non-adiabatic operator) the 
following rate for a transition from internal mode level n to level n+1. 

(2n+l)f2n+l + (2n+5)<i>_/w   ]+4üJ2/ü)
2 

Wn.n + 1   =   («•!) DoJ D_o W()1 (2) 
1 + 5ü)n/w +411)2/0)- 

o  Do 

'01 
_ 2  2    p3-/-\ao,uD 

4^/27 (1 + 5u)DAo0 + 4u /u) )A«V— I— I 
Do  "UQ IT*I 

)~/ü)n -ncü0/2kT 
(2a) 

fm _ 2un 

In Equation (2a), T is the temperature of the thermalized acoustic modes, ai0 
is the circular frequency of the internal mode, and UQ is tne (circular) 
Debye frequency.  The anharmonic coupling effects are all condensed into the 
quantity Ail, called the Stokes shift.  Equations (2), (2a), (2b) are valid for 
temperatures T greater than the Debye temperature TD (=nü)ß/k., k is Boltzmann's 
constant) but less than T^^/Aft.  We will see later than otD/Afl >> 1.  For the 
Born-Oppenheimer approximation to be valid, it is required that (D0/ü)Q >> 1.  To 
obtain the transition rate W   i, change the sign of the argument of the 
exponential function in Equation (2a) and change n+1 to n in the first factor in 
Equation (2). 

CHARACTERISTICS OF THE NON-RADIATIVE TRANSITION RATE 

Several inferences may be made from Equation (2) and (2a).  For transitions 
between low lying levels, transitions between the ground and first excited 
states will have the longest lifetimes.  The internal modes with the lowest 
frequencies w generally will have the greatest non-radiative transition 
rates due to the factor 

uo/u,D 
(T/T*) 

This factor also can lead to large increases in transition rate for relatively 
small increases in temperature and Debye frequency. 

 . __ i ,  
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INTERPRETATION OF THE STOKES PARAMETER 

I 
The Stokes parameter Afi which appears in Equation (2a) has a simple 

interpretation for optically active internal modes.  The coupling between 
internal and lattice modes splits a single internal mode absorption or emission 
line into a band of lines and the maximum for the emission band is lower in 
frequency than the maximum for the absorption band by an amount Aft.  In 
addition, the second moment of the band is a function of Afi.   If the band 
shape were gaussian, there then would bt a straightforward relation to the band 
width.  This is the case when the formalism is applied to electronic states 
(F-centers in alkali halides).  However, as we will see, the band shape for 
internal vibrational modes is highly non-gaussian so that it is difficult to 
extract Afi from the band width. 

I 
In the next chapter we discuss the formal development of the theory. 

•* 

*» ti 

»S 

m 

•M 

•I 

5Lax, M. J., J. Chem. Phys., 20, 1752 (1952), 
tj 

-------  • - . • .  ~  ~.,.^»-._._ 
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CHAPTER 2 

THEORY 

USE BORN-OPPENHEIMER APPROXIMATION 

We apply the Born-Oppenheiraer approximation to the normal vibrational modes 
of a molecular lattice.  The internal modes constitute the fast subsystem and 
the acoustic modes constitute the slow subsystem.  The separation of the total 
Hamiltonian into an adiabatic part )£ and a non-adiabatic part X. which induces 
non-radiative transitions between Born-Oppenheiraer states is described in 
Appendix A. 

GOLDEN RULE TRANSITION RATE EXPRESSION 

Let r^ be the acoustic mode quantum number for a mode of frequency aK•  Let 
i be an internal mode quantum number for an initial internal mode state and let 
f be the quantum number for the final internal mode state.  Let n denote the set 
of initial acoustic mode quantum numbers {n*} and let m denote the set of final 
acoustic mode quantum numbers (ra^.  Then the transition rate from the initial 
to final state produced by the non-adiabatic interaction is obtained from first 
order time-dependent perturbation theory (golden rule). 

W(i,n+f,m) = 2* |<f,m|£|i,n>|2 6(Efm - Ein) (3) 
Tl 

We are interested in the total transition rate assuming a thermalized 
distribution of acoustic mode levels, so we must sum Equation (3) over final 
acoustic states m and average it over initial acoustic states n.  The result is 

W(i+f)   -|» Y] Pnl<f»m|<^|i,n>|2  6(Efm - Ein) (4) 
m,n 

where Pn is the probability that an acoustic state with quantum numbers {n,,.} is 
realized.  For a thermalized distribution, this is a Boltzmann probability 
distribution. 

, -BE 
Pn = Q

_1e  n (5a) 

L-ßE 
e  n (5b) 

n 

-.-•-•- - . - - - - - .-»... -_ - -_.- ..,._, ..-.-. -. . . .. >    •- - >_ . . __. •» .. 
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ß = 1/kT (5c) 

En = X (nK+i} *»K (3d> 
The validity of using the golden rule, Equation (3), for the transition rate has 
been studied by Lin using a master equation approach." 

CONDON APPROXIMATION 

The remainder of this discussion will be concerned with evaluating the 
transition rate given by Equation (4).  When the slow subsystem is a collection 
of harmonic oscillators the form of the non-adiabatic operator A, is given in 
Appendix B, Equation (B-2).  Using this expression, we obtain the matrix element 

,j7. V^ ( 9*.     34 . . ih> • ) 
<fm|«£|in> = - >     W<<Mfm|—    -^> + i <*f*fm|—± Hn^} ( 6) 

If we  assume  that  the reduced matrix elements 

<^cfi " -*»K <*f|ä7T> (7a) 3q K 

a 2u». 
^fi  *~±*<*K <*f|—ri> (7b) 

2 3q2 

do not  depend  on  the  acoustic  coordinates  q^   (our  "Condon approximation"), 
then we may write 

<fm|«£|in> -^|/Kfi<*fo|!!ii>    +%ti <*fm\*in>\ (8) 

While the Condon approximation is often a good one in dealing with electronic 
states, its validity is more questionable in this case.  However, the 

hi        simplification it produces is considerable.  Similarly, it is often assumed that 
:erm in Equation (8) can be neglected compared to theeC^f^  term since 
:erm contains the second derivative of the wave function with 

respect to the slow system coordinates.  Because of the questionable validity of 
this assumption and because dropping the term leads to no appreciable 
simplification, we will retain it. 

simpiiricai 
the7Ücfi ti 

the7lfKfi  t< 

"Lin, S. H., "On the Master Equation Approach of Vibrational Relaxation in 
Condensed Media," J. Chem. Phys., 61_, 3810 (1974). 
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p: 
INTEGRAL EXPRESSION FOR THE TRANSITION RATE ' 

: 
The sum appearing in Equation (4) can be converted to an integral by 

1 several methods summarized by Perlin in his review article (See Reference 3, 1 
1 footnote p. 3). One convenient method involving the use of the integral • 

."• representation of the delta function is outlined in Appendix C.  The resulting • 
• transition rate (see Equation (C-9)) is 

'. ' 

i W(i+f) = i_ j   Ffi(t)exp|iu)fit +]T FK(t)L<£i  -  SVdC 
•h    -a,                                     \                            K                                                 ) 

(9) • 

i 

*• 
where 

- > 

1 
Ffi(t) = ^|X(cfi|

2F<(t) +^<4fiAKfiMt)^<£*xfiAxfiEx(t) 
<                                                          K                                                       K 

2 i 
- 

+ X1 (^fi^fi +7^fÄfi)AXfiEx(t) 
K ,X • • L 

L' 
K •*- 
k-' K 

(9a) 

1 
cosh (id) t + p ßfiw ) 

i 
FK(t) • k 

(9b) 

i 2 sinh (i ßfuo,,) 
2   *    .. 

EK(t)  - FK(t)  - I coth   (I ßfiü)K) (9c) 

|                  S - ^ I coth (I ßfu,K) AKfi                                   (9d) 
• 

1 - 
A
Kfi • %£  " «fci                                        (9e) 

In Equation (9e), qKf and qK£ are the equilibrium values of the dimensionless 9, acoustic normal coordinate qK when the internal mode is in states f and i, 
respectively.  We define our dimensionless coordinates to be those which put 

•          the kinetic energy operator in the form shown in Equation (B-l) in Appendix B. 

1 • 

r 
1 

9. 

.     9 
See Appendix F. 

• ;
; 
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APPROXIMATE EVALUATION OF THE 1RANSITION RATE INTEGRAL 

An approximate evaluation of the integral in Equation (9) may be obtained 

by the method of steepest descents as described by Perlin (Reference 3, 
footnote, p. 3) and outlined in Appendix D.  The result is still somewhat 
unweildy so we make the further approximation that the sums over the acoustic 
modes can be replaced by sums in which the frequencies inK   are replaced by 
some average frequency UJQ.  For convenience, we will refer to uD as the 
Debye frequency although the connection is somewhat tenuous.  However, there is 
some evidence that the average frequency determined from the lattice infrared 
absorption spectrum correlates well with the Debye frequency determined by other 
methods, for example, from specific heat data.' 

The transition rate expression resulting from these approximations 1- 
reproduced below. 

W(i*f)  = -L J    27r       Ffi(-iz0)  exp{g(z0)> (10) 
f>2   Tg"(z0) 

where 

g"(z0)  = J? (10a) 

exp{g(z0)}   = exp)l. ßfiunp+P-SS   )    *     ( (10b) 

Ffi(-izo)   =^J<4fi|2FD +lX]^fi^fi|2K"S/2So}2 

*  2   Re jXXfi 2^Xfi&Xfi|   |FD  "  S/2S°j 

-lXW<fil2 (10c) 

K 

. • 

1 * 

• 

- • 

S = S0 cothjl ßfiwoj                                         (!0d) 
1 
• 

I 
P =-Jx2 + p2                                                 (lOe) 

N FD =• P/2S0                                                 (lOf) I 

• * 

- 'Plendl, J. Mi, "New Spectral and Atomistic Relations in Physics and Chemistry • 

t< ot Solids," in Optical Properties of Solids, S. Nudelman and S. S. Mitra, eds., • 
Plenum, New York (1969), p. 310 ff. 

K 
• 

J 
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The three parameters p, S , and x, appearing in the transition rate expression 
are defined below, Equations (lla-c). 

P " 
10 -. 

-£i (11a) 

5o=iZ\fi (Hb) 
K 

s 
x  = ° 

sinh/I BfiujA (Uc) 

The dimensionless quantity S0, introduced by Huang and Rhys,° is a measure 
of the strength of the anhannonic coupling between a given internal mode and the 
acoustic modes.  As we will see in Chapter 4, S0 is a dimensionless Stokes 
shift, S0 = Afl/2ü)D. 

It remains to evaluate the internal mode reduced matrix elements, eC, ei 
and/7/K£^.  For this, we need a specific model Hamiltonian to be described in 
the next chapter. 

°Huang, K. and Rhys, A., "Theory of Light Absorption and Non-Radiative 
Transitions in F-Centers," Proc. Roy. Soc, A204, 406 (1Q50). 
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CHAPTER 3 

MODEL HAMILTONIAN AND BORN-OPPENHEIMER SOLUTION 

MOLECULAR LATTICE HAMILTONIAN 

We write the Harailtonian of a molecular lattice in the following form: 

3rN 

HT I Mnun + V(U1,...,u3rN) (12) 
n=l 

where un is the n'th cartesian coordinate displacement from equilibrium, N is 
the total number of molecules, r is the number of atoms per molecule, and Mn 
is the mass of the atom associated with the n'th coordinate.  The potential 

energy V is a function of all the displacements.  If we develop V in a power 
series we obtain 

E(2)        V^   (3) 
vmn umun + /_-.  Vlmn ulumun + '' • (13) 

m,n 1,m,n, 

There is no linear term in Equation (13) since the un are displacements from 
equilibrium.  Concentrating on the quadratic term in Equation (13), we may find 
a transformation to real, diraensionless normal coordinates in the form 

3rN 

where An; is a real, orthogonal matrix.  In the new coordinates, the 
Hamiltoman operator becomes 

H - 2-4 **»j (<lj " "a—) + 2-, AiJkliW 

(14) 

(15) 

where 

Z(3)  /    *3 
AHAmjAmkvlmn \JrrzrZ  Ai iic = 2_^    A1iAm4AmkVlmn */ £  (16) 

1 ,m,n 
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Up to this point, we have made no distinction between lattice and internal 
modes.  Now, following Toton,* we isolate one internal mode whose coordinate we 
designate q0.  Greek subscripts will designate acoustic mode coordinates. 
Then, the Hamiltonian may be written in the following form: 

= 1 
2 

H  = £ -hto0 

\°       3q2/     r2 \<       3q2/ 

zL B<xq*qx + ^oi^ CK% q02-r B<xq<q\ + %Z^ c«q* + ••• (17) 

Since we are interested in the interaction between the internal mode qQ and 
the acoustic modes qK, we have ignored terms which involve interactions with 
internal modes other than q0 and anharmonic terms which involve internal modes 
alone or acoustic modes alone. 

BORN-OPPENHEIMER SEPARATION 

Following the Born-Oppenheimer prescription, we separate the Hamiltonian, 
Equation (17), into the fast part 

Ho - l*u0 I- !_. + (1+2C) q0 + 2Bq0 + 2A | (18) 
2     (  3q2 ) 

o 

where 

E,    2 
T^KqK 

k 

*<"oB = 2^ BKX<I.C<U 
K ,X 

-no)0C - 2*   CK% 

and the slow part 

••IKA 
K 3q2 (19) 

ic 

*Toton, E. T., NSWC, unpublished. 
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The Born-Oppenheimer basis functions, therefore, are products 

T^O»^ • *(<i0,<iKh(<iK) 
(20) 

where the first factor is a solution of the fast part 

Ho*s = es^<Hs (21) 

and the second factor is a solution of 

A^^+ es(qK)f t»sn = Esn *sn 
K    

2 3q2 ) (22) 
K 

The internal mode quantum number is s and the collection of acoustic mode 
quantum numbers is represented by n. 

INTERNAL MODE (FAST SUBSYSTEM) SOLUTION 

Equation (21) is a harmonic oscillator equation which we can reduce to 
standard form by making the change of variable 

Z = p(q0-q0) (23) 

where 

p4 = 1 + 2C (23a) 

q0 = -p~
AB (23b) 

Then, Equation (21) becomes 
1 „ - 

£'••; 

1 with energy eigenvalues 

|*8 • £s*s (24) 

. - 
L' •. 

»• - 

e,(qK) =  (s+I)fiw0p2 + (A - Ip^B2k0 (25) 

>-• -  - (s  = 0,1,2,...) 

• 

The wave   functions  are 

* 
••Cq0,q,e) -Je *s

(H0)(z) (26) 

£    - 
• 

L -  . 
i 

• 

13 
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where ^sNO)(z) £s a normalized harmonic oscillator eigen function.  The 
factor /p normalizes the wave function as a function of q0.  Both the energy 
eigenvalues and the wave functions depend parametrically on the acoustic 
coordinates qK through the quantities A, B, and p. 

EQUILIBRIUM ACOUSTIC NORMAL COORDINATES 

The equilibrium acoustic normal coordinates are determined by the energy 
eigenvalues, Equation (25), which act as effective potentials for the acoustic 
wave equation.  The equilibrium coordinates are derived in Appendix F and the 
result [Equation (F-3)] is 

*'a-HKr (27) 

where qKS   is the equilibrium value of coordinate q,,. when the internal 
mode is in state s. 

NON-ADIABATIC OPERATOR MATRIX ELEMENTS 

We may substitute the wave functions, Equation (26), into Equations (7a,b) 

to obtain the non-adiabatic operator reduced matrix elements eCK fi and "?Kf^.  The 
calculation is outlined in Appendix E and the results are given in Equations 
(E-6) and (E-7).  The matrix elements are functions of the acoustic coordinates, 
but, in the spirit of the Condon approximation, we will assume that they are 
constants with values obtained by substituting the equilibrium Values of the 
acoustic coordinates for the internal mode in the initial state i.  In addition, 
we assume that the third order anharmonic corrections to the Hamiltonian, 
Equation (17), are small so that the quantities B,C«1 and pad. 

The results of Appendix E indicate that the non-radiative transition rates 
are non-zero only for nearest-neighbor (i+iil) and next-nearest-neighbor (i+i±2) 
transitions.  Of these, the nearest neighbor transition rates will be typically 
larger by many orders of magnitude.  Thus, from Equations (E-6, E-7) we obtain 

4c,i+l,i " Jij2(i+1XY] \x   qxi - K       V B^x qKi  Cfc H        (28) 

Xc,i+l,i - JLj2(i+lj \K (29) 

ESTIMATING NORMAL MODE ANHARMONIC COUPLING COEFFICIENTS 

We are now in a position to determine the non-radiative transition rate if 
we estimate the normal mode anharmonic coupling coefficients B^ ana" CK. 

14 
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Comparing Equations (16) and (17), we can obtain expressions for CK and 
BKj^ in terms of the third order coefficients of the power series development 
of the potential energy of the crystal.  In particular, we write C^ and 
B^ in the following suggestive forms 

V_3<_   -3/2 

/N  M3/2 

r     = 1   3K  fi" c<  — —ZTZ      (30) 
U „/(!)„ 

where 

3K___ m     y lo mo nk y(3) 

/N M3/2   l,m,n,   ZkiMmMn 
V
m (30a) Iran 

VT  i *3/2 
3<X -n 

78   M3/2       /(i>0uKwx 
^   = ±=   4^        * (31) 

where 

• s 3KX     =     /   .       lo trac   nX     y(3) V Y' (31a) 
/N M3/2       l,m,n     /5p^^ lmn 

In Equations (30a) and (31a), M is the mass of a molecule and N is the number of 
molecules.  Since binding forces are not long range, the coefficients Vj3^ 
are significant only when l,m,n are nearly equal.  Therefore, the triple sum has 
effectively the order of N terms.  The orthogonal transformation coefficients 
k\\  are typically sinusoidal and proportional to N_i' .  Therefore, CK is 
proportional to N'N-^'2 = N-1' .  Apparently, this is true also of BK^ but it is 
not clear that there are not other constraints which determine the non-zero 
values of BKx-  It is clear, for example, that the energy eigenvalues in Equation 
(25) should be essentially independent of the size of the system and so the 
quantity B appearing in Equation (25) and defined after Equation (18) should be 
essentially independent of N when B is evaluated for q^ equal to the equilibrium 
values q<s.  For this to be true, we require Bv/x to be proportional to N-J-* 
Then Equations (30a) and (31a) define average third order coefficients V^ and 
V3KX • 

Calculations for a linear diatomic chain indicate that, for a rough 
approximation, we may set V^K\  ~ f''(re) and V^K  ~ 2~3'2 f'''(re) where f(r) is 
a pair potential describing the intermolecular force and re is the equilibrium 
molecular separation.  Using this approximation, we may obtain an estimate of 
the function Ff£ which appears in the transition rate expression (see Equation 
(10c)).  The calculation is described in Appendix G.  When SQ«1 and TD<T<TD/2S , 
the resulting transition rate reduces to the expression in Equations (2, 2a, 2b) 
in which we have set Af< • wnS0/2.  The results of Appendix G (see Equation G-9) 
are combined with the transition rate expressions (Equations (10), (11)) and 
summarized below [Equations (32-32f)]. 

15 
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wi+f   = S5*  WD — exp  /g(z0)j—^i—- (32) 
/P { > (fuu   )2 

P\ 
exp  ^g(z0)^  • exp <JL __ü p  + P-S^ {^—} (32a) ^^...{^„»jy 

F_. S fi       = 8     o (i+l)«f,i+l  +  i«f,i-l     J(2i+l)2(P-S)2 

Ona>D)2 |P| 

+ 4(2i+l)(P-S)   +   (2i+l)2 P+4} (32b) 

P - - — (32c) 

x =  SQ/sinh   (I ßfiun) (32d) 
2 

P  =   Wp2   + x2 (32e) 

S = S0 coth   (I ßfiwD) (32f) 

For  up-transit ions,   the  final state  f  =  i+1  so  that uf£ = di0 where w0  is  the 
internal mode  vibrational   frequency.     For down  transitions,   f =  i-1  so  that 

"'fi  =  ~^o' 

16 
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CHAPTER 4 

RADIATIVE TRANSITIONS AND THE STOKES SHIFT 

GOLDEN RULE FOR RADIATIVE TRANSITIONS 

In order to obtain the transition rates for radiative transitions, we can 
adapt the formalism for non-radiative transitions by replacing the non-adiabatic 
operator <£by the dipole moment operator u•  The expression for the radiative 
transition rate corresponding to Equation (4) is then 

Wi+f(iw) = J pV Pn|<f,m|w|i,n>|
26(Efm-Ein±hu,) (33) 

m,n 

where p is a factor involving the intensity of incident radiation (absorption) 
or density of radiation field states (emission) whose structure is not important 
for our discussion.  The absorbed or emitted photon has frequency <o with the 
positive sign for emission and the negative sign for absorption.  If we make use 
of the Condon approximation, we can assume that wj^ (=<f|n| i>) is a constant so 
that the radiative transition rate can be obtained from the last term in the 

non-radiative transition rate expression by replacing |^ Kfil  witn P f P fi[  (see 
Appendix C, Equations (C-4)(C-9)).  The result is that the emission or 
absorption at frequency ID is proportional to the integral 

l(±u) = f   eiimt  + g(i,:>dt (34) 
—OP 

where g is the function defined in Appendix D, Equation (D-2). 

HUANG-RHYS FACTOR RELATED TO MOMENTS OF SPECTRAL DISTRIBUTION 

It was first pointed out by Lax that the Huang-Rhys factor is directly 
related to the moments of the distribution, Equation (34) (see Reference 4, 
footnote p. 3).  The derivation is repeated in Appendix H wherein it is shown 
that the Stokes parameter Aft is the difference between the means of absorption 
and emission bands and that Aft = 2S0<DJ}.  It is also seen that the second 
moment is related to SQ (Equation (H-13)): 

2 
o2 = u)D S0 coth (I ßhüoD) (35) 

17 
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If the distribution were gaussian, it would be possible to determine SQ by 
measuring the full width at half maximum, Aw, since, in this case, 

Aw 2/2 in : (36) 

SPECTRAL BAND SHAPE "OT GAUSSIAN 

Unfortunately, we see by examining the expressions for skewness and kurtosis 
(Equations (H-14)(H-15)) that the deviation from a gaussian distribution is 
considerable if S0<<1 which is the case for internal mode vibrations.  Typical 
internal mode frequencies lie in the range 500 cm-1 to 2500 cm-1 (10^ sec-i to 
5 x 10  sec-1) with typical infrared absorption bandwidths of i0-50 cm" . 
Typical Debye frequencies are around 100 cm-1 (2 x 10  sec" or 150°K).  Thus, 
Aw/o)D ~ 0.2 which implies, from Equation (35), that S ~ 1/200 and, therefore, if 
T>75°K, that So<l/200.  This is in sharp contrast to the situation for electronic 
transitions in F-centers where Au~2000-5000 cm-1 so that So~20 (see Reference 8, 
footnote, p. 10). 

HOW TO DETERMINE HUANG-RHYS FACTOR 

It is practically impossible to determine experimentally the moments of a 
typical infrared spectral band due to the presence of noise.  Besides the mean 
frequency, the width at half maximum is about the only parameter which can be 
measured with any degree of accuracy.  However, it is possible to relate the 
band width and the Stokes parameter even for a non-gaussian distribution using 
the method described in Appendix I.  A band shape function with arbitrary third 
and fourth moments is chosen and the moments are constrained to satisfy 
Equations (H-13) - (H-15).  Then S0 can be determined from the bandwidth by 
finding the root of a transcendental equation.  In the next chapter we will 
apply this procedure to the energetic material nitroraethane. 

SADDLE POINT APPROXIMATION NOT GOOD FOR RADIATIVE TRANSITIONS 

By using the method of moments, we have not found it necessary to actually 
evaluate the integral in Equation (34).  This is fortunate since the saddle 
point approximation which we used for the non-radiative transition rates is not 
a good one for the radiative rates.  This point is discussed in Appendix J. 

18 
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CHAPTER 5 

APPLICATION TO NITROMETHANE 

LIQUID VERSUS CRYSTALLINE NITROMETHANE 

In this section, we apply the results of the preceding sections to the 
extensively studied and relatively simple condensed explosive material, 
nitromethane.  One caveat is necessary, however.  Under normal conditions, 
nitromethane is a liquid and even under the extreme conditions characteristic of 
detonations it most likely retains the structure of a liquid.  The preceding 
results apply, strictly speaking, to a material which has long range periodic 
structure.  It is not clear what the absence of such a structure would have on 
the predicted transition rates.  In order to make a direct comparison with the 
results to be presented, it will be necessary to perform shock experiments on 
solid nitromethane. 

PARAMETERS TO BE DETERMINED 

In order to apply the transition rate formula (Equation (32)), we need four 
parameters for a material.  Two are characteristic of the state of the shocked 
material:  the Debye frequency ton and the temperature T.  Two are characteristic 
of the internal mode whose transition rate is to be determined:  the vibration 
frequency ü>0 and the Huang-Rhys parameter SQ. 

The Debye frequency is a function of compression which, in turn, is directly 
related to the shock pressure via the Hugoniot relation.  The internal mode 
vibrational frequencies are only slightly affected by compression** so that we 
can safely assume them to be constant. 

HUANG-RHYS FACTORS FOR NITROMETHANE 

The variation of the Huang-Rhys factor SQ  with compression is not known, 
but the bandwidths of infrared absorption bands generally increase slightly with 
compression.  In the absenbce of more definitive data at the present time we 
will assume S0 is constant.  Table 1 lists values of several optically active 
internal modes of nitromethane.  The values are calculated from the bandwidths 

See Reference 10, footnote p. 23. 

**Typically less than 0.02% per kilobar for the optically active internal 
modes of nitromethane. 

19 

_* > a m m m » «-^* . •  . . . 



^^^^^*^^w 

NSWC TR 83-9U 

using Che method described in Appendix I.  Two values ot S0 are given, 
corresponding Co Che Cwo slightly differenc representations ot Che band shape, 
Equations (1-5) and (1-6). 

We should note here that the optically active modes are a subset or tne 
tiny fraction of modes which have zero wave number out of the total of 
approximately Avogadro's number of internal modes. 

TABLE 1.  HUANG-RHYS PARAMETER FOR SOME OPTICALLY ACTIVE INTERNAL 
MODES OF NITROMETHANE (CH3N02) 

MODE 0)o(cm
-1)    Awtcm"1)*   S0(Eq. 1-5)      S0(Lq. 1-6) 

CH3 rocking parallel 

to NO2 plane 

C-N stretch 

NO2 symmetric bending 

NO2 rocking perp. to 

NO2 plane 

NO2 rocking parallel 
to NO2 plane 

1104 29±6 1.47xl0"2 1.39xl0~2 

923 6.5±1.1 l.OlxlO"3 9.6xl0"4 

663 19±2.3 7.3xl0~3 6.9xl0-3 

609 8.2±1.1 1.58xl0"3 1.5Uxl0"3 

485 7. 6±1.5 1.37xl0~3 1.30xl0"3 

*Bandwidths were measured from infrared absorption spectra obtained in 
a diamond-anvil cell at room temperature (295°K) and pressures oil the 
order of 5-18 kbar.  Spectra obtained by J. W. Brasch, Jr. of NSWC. 

The data from which SQ is calculated were obtained in a diamond anvil 
»1 cell at room temperature (295°K) and relatively low pressures (5 to 18 kbar) by 
- . J. W. Brasch of NSWC.  The nitromethane is in a solid polycrystalline torm u nder 
. these conditions. 

1 *\ 
The values calculated for S0 are for a Debye frequency of 2 x 10  raa/ sec 

r| (106.2 cm-* or 152.7°K).  It was determined that this is a reasonable value » 
for the Debye frequency at standard temperature and pressure by taking the 
centroid of the low frequency part of the infrared absorption spectrum of • 

nitromethane. *t 

3 t 

i 
•/. .• 
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TRANSITION RATES VERSUS DEBYE FREQUENCY AND TEMPERATURE 

In Figure 1, we have plotted the transition rates given by Equation (32) 
for the internal modes listed in Table 1 using the values of S0 given in the 
next to last column of the Table.  The transition rate is plotted as a function 
of cjD for 300°K (solid curves) and for 2100°K (dashed curves).  The most 
noticeable feature of the curves is the large variation in transition rates with 
relatively small changes in üJ0, UQ, and T.  The C-N stretching mode, with a 
frequency of 1.74x10^ sec--*- has a ground to first excited state transition 
rate of about 10   sec- at a temperature of 300°K and ton of 2x10  sec"1 (this 
point is beyond the scale of the graph).  On the other hand, the NO2 symmetric 
bending mode with about two thirds the C-N stretching frequency, three times the 
C-N stretch bandwidth, at seven times higher temperature and two times higher 
Debye frequency has a transition rate of 10' sec-1, twenty six orders of 
magnitude greater. 

One conclusion to be drawn from Figure 1 is that energy is initially coupled 
most rapidly into the lowest frequency internal mode, NO2 rocking parallel to 
the NO2 plane at 485 cm-1.  This is not to say that there are not other internal 
modes into which energy is coupled more rapidly since we presently have no 
transition rate information. We are discounting the NO2 symmetric bei^'ng 
mode since the calculated large transition rate is due to its large apparent 
bandwidth and the band may actually be the superposition of two individual bands. 

Another conclusion to be drawn from Figure 1 is that small increases in 
temperature and compression (compression increases the Debye frequency) will 
lead to large increases in the rate of energy transfer.  We also note that the 
relative importance of the internal modes in energy relaxation can change with 
changes in temperature and compression.  For example, at 300°K, the CH3 rocking 
parallel to plane the NO2 (CH3 rock II) has a significantly lower excitation 
rate than the NO2 rocking perpendicular to the NO2 place (NO2 rock-L), while at 
2100°K the excitation rates are comparable, with the CH3 rock II rate exceeding the 
NO2 rock J_ at the higher values of UQ, 

Inserting numerical values in Equation (2), we discover that Win is 
typically ten times greater than WQI, and W23 is typically forty times greater. 
Thus, the relaxation time for energy distribution among the low lying internal 
levels is determined by the ground to first excited state transition rate, 
WQI.  We cannot say anything about transitions between levels lying near the 
top of the potential well since our analysis assumes a harmonic internal mode 

potential.  At this point we can only say that, if the transitions between 
levels close to dissociation are also rapid, then the rate WQI would be the 
significant parameter determing the overall dissociation rate.  We may expect 

energy to be redistributed between internal modes more rapidly than it would be 
transferred between acoustic and internal modes.  Thus, the overall internal 
mode thermal relaxation time as well as the overall dissociation rate should be 
controlled by WQI for the fastest internal mode (which seems to be the NO2 
rock II in nitromethane). 
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FIGURE 1.   TRANSITION RATES FOR SEVERAL INTERNAL MODES OF NITROMETHANE VERSUS DEBYE 
FREQUENCY 
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RELATION OF DEBYE FREQUENCY TO COMPRESSION 

Since we have repeatedly stressed (pun intended) the relation of Debye 

frequency to compression, it will be of interest to find this relation for 
nitromethane.  We can determine this relation approximately by using the 
expression for the Grüneisen parameter which arises in the Debye mode of a solid, 

din wn 

Y = -  2 (37) 
dtn v 

where y   is the Grüneisen parameter and v is the specific volume.'  Integrating 
Equation (37) we get 

:*_. e„P \.r
v 

U
D0      ( in v0 

Y dm v? (38) 

Hardesty and Lysne  have calculated the thermodynamic properties of shocked 
nitromethane along Hugoniot's for initial pressure of 1 bar and initial 
temperatures of 244°K, 298°K, and 373°K.  If we numerically integrate their 
Grüneisen parameter data according to Equation (38), we obtain the results shown 
in Figure 2.  It is assumed that UQ0 = 2 X 10*  sec  .  Figure 3 displays a log- 
log plot of the same data as Figure 2.  From Figure 3 we see that, above 5 kbar, 

the curves are nearly linear indicating an approximate power law relation.  The 
dashed lines are isotherms showing the shock temperature on each Hugoniot. 

TRANSITION RATES ALONG HUGONIOT 

Using the result shown in Figures 2 and 3 we can plot the transition rates 
versus pressure along a Hugoniot.  This is done in Figure 4 for the Hugoniot 
with initial temperature 298°K.  Again, Figure 5 is a log-log plot of the same 
data showing very close to power law curves above 5 kbar. 

PRESSURE-TIME CRITICAL RELATION 

If we disregard the NO2 symmetric bending mode, the NO2 rocking mode 
parallel to the NÜ£ plane is the mode whose transition rate is the most 
important in energy transfer from the acoustic modes.  If the transition rates 
calculated from Equation (32) are approximately correct and if the transition 
rate for the NO2 rocking (parallel) mode is the controlling factor in the 
overall dissociation chain, then the plot of transition rate versus shock 

'Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, (Oxford Univ. 
Press, 1954), sec. 4. 

'•"Hardesty, D. R. and Lysne, P. C, Shock Initiation and Detonation Properties 
of Homogeneous Explosives, Sandia Laboratories Report SLA 74-0165, May 1974. 
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pressure for this mode is a sort of pressure-time criterion for initiation of 
reactions.  For it is clear that a shock of a given pressure must be sustained 
for a time which is some multiple (of order unity) of WQI in order for 
significant dissociation to occur. 

COMPARISON WITH PRESSURE-TIME CRITICAL INITIATION DATA 

In this regard, de Longueville, Fauquignon, and Moulard reported critical 
initiation data in the pressure-time plane for several condensed explosives 
including nitromethane.   We have included that data, shown as short dotted 
line segments labelled DLFM on the graphs in Figures 4 and 5.  The inverse of 
de Longueville, Fauquignon, and Moulard's time is plotted on the ordinate, WQI- 
It is interesting, though possibly coincidental, that the DLFM data, over its 

limited range, show times that are approximately six to seven times the N0£ 
rocking (parallel) transition lifetimes at the corresponding pressures and the 
curve segments show roughly the same slope. 

• 
1Ide Longueville, Y., Fauquignon, C., and Moulard, H., Initiation of Se 
Condensed Explosives by a Given Duration Shock Wave, Sixth Symposium 

veral 9: 

;• (International) on Detonation, ONR ACR-221, Aug 1976, pp. 105 ff. 
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CHAPTER 6 

CONCLUSION 

We have presented a quantum mechanical calculation of the transition rates 
for shock induced transitions between the low lying internal molecular normal 
modes in a molecular solid.  We have assumed that the shock produces a 
distribution of acoustic phonons which becomes thermalized before any significant 
internal mode phonons are created.  This assumption seems to have been justified 
in the case of nitromethane in which the shortest internal mode transition 
lifetimes are-of the order of nanoseconds while lattice relaxation times 
determined from Van Vleck's calculation are of the order of picoseconds or 
less.  In particular, at the von Neumann spike pressure in nitromethane (about 
200 kbar), the NO2 rocking (parallel to NO2 plane) mode has an excitation 
time of about 4 nsec. 

When we compared the excitation lifetimes with the pressure-time -ritical 
initiation data of de Longueville, Fauquignon, and Moulard, we found that the 
times were not inconsistent with the hypothesis that the overall dissociation 
rate limiting factor is the relaxation time (WQI) for transferring energy 
from the acoustic modes to a limited number of internaJ molecular modes (NO2 
rocking parallel to NO2 plane to nitromethane). 

We must reiterate, however, that the numbers we have obtained for 
nitromethane are subject to many uncertainties, among them, uncertainties in 
determining the Huang-Rhys factor S0 for each mode and the uncertainty in a 
suitable choice of Debye frequency uijj.  Small changes in both of these 
quantities lead to large changes in the transition rates.  Also, for the great 
majority of modes which are not optically active, it is not possible to 
determine S0.  Perhaps the results of neutron scattering experiments may give 
useful information on these modes.  Other problems are the question of the 
validity of the Condon approximation [Equation (9)] , the determination of the 
anharmonic coupling coefficents [Equation (30) and (31)], the validity of 
isolating one internal mode, neglecting the interaction between internal modes, 
and the use of a single frequency lop to characterize the acoustic spectrum. 
Finally, the shock data available for nitromethane is for the liquid state, 
whereas, the calculations, strictly speaking, apply to the solid state.  We hope 
that experimenters will be encouraged to undertake shock experiments on solid 
nitromethane in order to obtain both Hugoniot data and critical initiation 
data.  In order to apply the results presented here to other solid explosives it 
is necessary that the explosive be homogeneous and have an internal mode 
spectrum clearly distinguished and well separated from the lattice spectrum. 
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APPENDIX A 

BORN-OPPENHEIMER APPROXIMATION 

m 
•> Suppose we can split the coordinates of a system into two groups, a fast 

• 
subsystem {r£} and a slow subsystem {q^}.  The Hamiltonian of the system is 

1 H(ri,qK) = Tr + Tq + VCri.q^)                                (A-l) 

M   " 
where Tr and Tq are the kinetic energy operators for the fast and slow 
coordinates, respectively.  Let - 

•    " 

L - 
E 

HyCq^) = Tr + V(ri>qK)                                        (A~2) 

Ojl and consider the solutions t|»s of the eigenvalue problem 

- 
»rts^i^J = Gs((lic) *8(ri*<k>                               (A~3) 

The eigenvalues eg and the wave functions, if s(r£) depend parametrically on the 
coordinates qK.  Suppose the set {• s (

r f» <!,,)} is a complete orthonormal set in 
r-space for every of values of q .  Then any solution f of the original system 
Schrbdinger equation, 

m   = E*                                                    (A-4) 

• can be written 

f<ri»9r) " 5Z*s(q<) *s (ri'q<)                             (A_5) 
s 

Then Equation (A-4) is equivalent to 

m 
m 

: 
• • 

£jes(1.c> + Tq * Ej*s(q,e) *s Cr^) = 0                     (A-6) 
s 

Now, consider Tq and ^s(r£,qK) as operators in q-space.  Then 

*•• Vs(ri><k) = [^»•«(«i»%t>] +4's(ri,qic) Tq                    (A-7) 

Substituting (A-7) into (A-6) we obtain the following equivalent version of 
(A-4): 

(H*£)  t • El                                              (A-8) 
• - 

- 
• 

A-l 
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where 

#*   = XI ^s(ri'q<) jTq   + cs(%}\ •.<1ic) 

&   =X   tTq^s<ri>q<)J   *s   {\} 

(A-9a) 

(A-9b) 

In Equations (A-9a,b), ^ is the adiabatic Hamiltonian and i. is the non-adiabatic 
operator.  The usual Born-Oppenheiraer basis is obtained by ignoring öCand solving 
the equation >f 1   = Ef, or, equivalently, 

Tq + ••<Se)| •sn((lK
) = E8n+sn(<lK) (A-10) 

where s,n are the fast and slow subsystem quantum numbers, respectively.  The 
Born-Oppenheimer basis states are 

*«n<ri»«ie) = "*ls(ri'clK)<t,sn(clK) (A-ll) 

A-2 

• .-••  -. -•• . • • . • • •_. • • . . . . , • . . ..,. i ^_*.^ _«_—_. _._._.__ — . 
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APPENDIX B 

NON-ADIABATIC OPERATOR 

Equation (A-9b) defines the non-adiabatic operator.  What does this operator 
look like if the slow subsystem consists of a set of harmonic oscillators?  In 
this case the kinetic energy operator Tq is 

Tq = 2 V. "-|SKT (B_1) 

In Equation (B-l), the kinetic energy has been written using dimensionless 
coordinates q = /mw/fi x and the normal mode frequencies are denoted by uK.     The 
action of the non-adiabatic operator on Ysn is therefore 

*sn « - Y, *°K llT-   T^ + i   "4s •«> (B-2) 

B-l 

 = • - • - »_L_^_«_  _  _  .  _  _  -_ «_' •_. ,w ._._  ._- ^_ -  ._ •_  ^    . 
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APPENDIX C 

EVALUATION OF SUM OVER STATES 

Introducing the integral representation of the delta function, Equation (A) 
becomes 

W(i*f) = L^       f 22  exP {^Efm-Ein^tZ-fii Pn|<fm| <£|in>| d (C-l) 

In the lowest order, the acoustic mode wave functions are products of harmonic 
oscillator wave functions: 

TT   (K) 

''in "11 +in (C-2) 

The energy levels are 

Ein - Ei + ?M) -fiou,, 
and the square of the matrix element appearing in (C-l) is 

2 

n <fm|£|in>|2  "]T|Afi|      4fn 
(tc)   3* 

(K) 
in 

K 

*% 
•> 

\I/K 

(p) |    (p) 
Ofm      *in > 

(C-3) 

E(K)                          (X) 
/»       /*              (K)   . 3*in            (X) . »•in,       n (v) , 

.'Scfi'Sfi     <*fm      -T-^X*fm      — *>   11   <*fm 
K ,X K        3qK X        3c»X w/i 

(p)    FT   (v)     (v) 
• in >    -L -KOfm       *in > 

\   X '        K K        3q 

(K)        (K)    , 
> <*fm      *in  > n 

if tc — 

(w).    in) 
<*fm   I «in  > 

M P 

+  c .c. 

C-l 

- .--••-. «   .  « .   .  ...  . .   . i. >  . i - •   i.«  .   .   . J 
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Ä2n 
K y 

Substituting (C-4) in (C-l) we obtain 

y (u)|    (u\. 
<*fra   i   *in  >\ 

u u 
I C-4; 

W(i*f)   =1-      /     exp(iufit)   JFfi(t)   +Efi(t)   +Hfl(t)   +Mfi(t)i   dt 

where 

üjfi  =   (Ef-E^)/^ 

(C-5) 

(C-5a) 

^i^)=x!^ii2^fi(t)nG,fi(c' 
WJ'tc 

Efi(t)   = 

K, A 

p^X 

(C-5b) 

(C-5c) 

Kfi(t)  •XXcfi^jc(t)  11  Sfi(t)Z^^Afi + complex conjugate 
— V/K I ' (C-5d) K 

and 

Mfi(t) =jxiwKfirnGufi(t' 

CO CD 

wt)=ZEPn i(m-n)ü)  t (u)    (P) 
<*fm |*in > 

m-o n=o 

(C-5e) 

(C-6a) 

CD CD 

^(t)=EEp* i(m-n)ü)  t 

m=o n=o 

(K)     .        U) 
<*fm   |-^- 4>in> 

3qk 
(C-6b) 

C-2 

..--.v .-^-^. ^   _   ^       ^       «_^J_ 
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3! 

^—\ ^r—N           i(m-n)a)   t        (K )               (K )          (K )      (K ) 
EKfi(t)  =2^2^?n 6              K    <•*» l^~ *«»><• fin Kin >            (C-6c) 

m=o n=o                                   .                K 

- 

t; 

The  sums   in Equations   (C-6a,b,c)   can be  evaluated  using  the  expression  for  the 
density matrix of  the  harmonic  oscillator   in  the  coordinate  representation 
(Slater's  sum or Mehler's   formula).            The  results  are 

SI GKfi(t)  - exp {EK(t)A<fi|                                                                                          (C-7a) 

- FKfi(t)   =  FK(t)   +   [Mt^fi]                                                                                       (C-7b) 

1 ^<fi(t)  = Eic^^icfi  Gic(t^                                                                                           CC-7c) 

• _ • 

where 

i ' 

• 

cosh(iw  t  + r- ßfiw   ) 
\{fV   -                     K           2           < 

2   sinh(I (lfaj)K)                                                                                            (C-8a) 

- 

1 
EK(t)   =  FK(t)   - I coth   (I ß-nu^)                                                                              (C-8b) 

A<fi • qKf - q<i                                                                            (c"8c) 

'* • 

In  Equation   (C-8c),   q^f  and  qKi  are  the  equilibrium values  of  the  acoustic 
coordinates when  the   fast   subsystem is   in  states   f and   i,   respectively.     Using 

a the results  above,  we can write  the expression  for  the  transition rate  as 
follows: 

E 
* 

00 

W(i*f)   = i-     f  exp(iufit)Ffi(t)Gfi(t)dt                                                         (C-9) 
fi2    -i 

M 
I 

where 

4 Ffi(t)   "SKcfil   F<(c)   +2^^<fi L*fi   ^U)Z2^ Xfi AXfi   EA^) 
<                                                          K                                                             X 

M 

+ Kfi ][j4fi AKfi E^(t)  + MfiS^fi **fi  E,c(t) 

K                                                                    < 

I 

- 
c-1See,   for  example,   O'Rourke,   R.   C,   Phys.   Rev.,   91,   265   (1953). 

C-3 

- - - - 
_ 
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Mfil
2 (C-9a) 

Mfi=SW^i (C"9b) 
IC 

Gfi(t) = expO^ F,c(t)A^fi - s[ (C-9c) 
K 

S = 2. -  coth (- ^ic^iefi (C-9d) 
2 

< 

C-4 
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APPENDIX D - 
¥ 

1 
SADDLE POINT INTEGRAL FOR TRANSITION RATE 

* 

--. It is convenient to make the change of variable z • it in the expression A 
~ for W(i+f) in Equation (9).  Then Equation (10) can be written in the form 

i i« — 

1 

W(i-f) = _L_   /  Ffi(-iz) eS
(z)dz                          (D-l) 

i*i2 -i-i 

[ where 
I 

y 

nj 

> 

V""» cosh(o) Z+-T  ßfiw )  2 
g(z) = wfiz +2^  hr ~Aiefi _ S 

K       2  sinh(i ß-nu)K)                            (D-2) 

a 
1 

»• • 

At  a  saddle  point, g'(z0) = 0 so that 

Zsinhlu  Z+-T- ßfitu   ;     2 
»K         K    ,     —  AKfi   =   0 (D_3) 

2 sinh(i ßfKDK) 

Equation (D-3) has many complex roots but precisely one real root.  There is at 
least one real root since the hyperbolic sine function goes to ±m  when z*±«°. 
There cannot be more than one real root because g"(z) is never zero for real z 
implying that g(z) is monotonic [See Equation (D-4)]. 

"(r.)   " £,»,        r- i-   -• 
2  cosh(o) z+-^ßfia)   )     2 ic      2        ic 

2  sinh(i ßfiwK) 
2 

In particular, g"(zo)>0 so the direction of steepest descent is along the 
imaginary axis.  Near the saddle point 

g(z) - g(z0) • I (z-z0)
2g"(z0) (D-5) 

D-l 

 . . 1 1 • A        
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Thus, deforming Che contour of integration to pass through the saddle point, we 
get 

00 

W(i+f) • i- Ffi(-iz0)exp {g(z0)} / exp {- i t2 g"(z0)}at 
A2 J 2 

and the final result is 

W(i*f)   =i-J—2l—    Ff.(_izo)  exp  {g(Zo)} 
*2   *g"(zn) 

(D-6) 

(D-7) 

More details  on  the   saddle  point   integral may be   found   in Perlin's   review article 
(Reference   3,   footnote,   p.   3). 

If we can  replace   the  acoustic   frequencies uiK   by a  single  average   frequency 
ujj,   a  considerable  simplification  is  achieved.     Then 

Ffi(-izQ)   »2^|<4efi|    FD +|//^cfjA,cfi|   )F° " \ cotl\j ««"Dl! 

*{lX« S^«*-« 'IX' pCi(».«J}f» - \ °«4 *A| 
11 

IE *•« (D-8) 

where 

»4 

FD   = 
coshCu^   Z      +  "T  ßflü)-)  Ü     O        I D 

2  sinh(I ß-fi(Dn) 
2 u (D-8a) 

3 Equation (D-3) which determines zQ becomes 
1: 

-- ' 

r 

_- 

N 
r 

p = x sinh ((Dj) z0 + i. ßfiui)) 

where 

(D-9) 

1 

1 

(D-9a) 

t 

.- 

D-2 • 

J •: 

y 
' 
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S 
x =      ° 

sinh(I Bfi»n) (D-9b) 
2 

»o'iE*«2« (D"9C) 2 

The solution is 

and 

Also, 

»fi *o " k ß*wD P +   IHln ITT^ ? (D_10) 

2 )|p|+2S0FD) 

Fn =   Vx2*P2 (D-lOa) 
2so 

:xp{g(z0)}   - expjl ßn.DP + 2S0FD -  sj     {-J^f^' (D"lla) 

;"(z0)  = 24 S0FD (D-llb) 

D-3 

l- - • -   -   -•-        - •.    ••-   -   •- ._ ._. • . • • - ^_ ^-.   -         -   -   . ..   ..-   .'•'•'w' V •»' •*!   
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APPENDIX E 

EVALUATION OF ^fi AND W f i 

Using the result in Equation (26) we obtain 

(•<• s-y 
(HO)    ,    (   (HO) 

/p" tyf       (Z) 1— </p"*i   (Z)> dq0 (E-l) 
3cI< ) 

and, transforming the variable of integration from qQ to Z, the result is 

(HO) 
/   34-.\   f   (HO)    d*.  (Z) ._        s /    \ 
(•f, __i) - / *f  (Z) _i  iL- dZ + JL (in /p )6fi       (E-2) 
V   3q</  y dZ 3qK      3q(C \    / 

Since f*i, the second term in Equation (E-2) is zero.  Differentiating Equation 
(23) we obtain 

«»o |I- - I P~4 CKZ + 2p"
3 ^ B^cfc - 2p~7 B C^ (E-3) 

A 

Using  Equations   (E-3),   (E-2),   and   (7a)  wt  obtain 

£Kii - - ^L ik p~4 CK<f |z i_ | i: 

(p"3Z-i ^A - P"7 BCJ <f|i-| i>| • 2 (p-J 7 . HLiQi - p"7 BCLI <f|±J i>> (E-4) 

where <f|Z 3/3Z| i> and <f 3/3Z i> are the usual harmonic oscillator matrix 
elements.  These may be evaluated most conveniently by writing Z and 3/3Z in 
terms of the creation and annihilation operators, a and a, and then using the 
raising and lowering properties of these operators. 

Z • I (a + a+) (E-5a) 

JL • I (a - a + ) (E-5b) 
3Z   /2 

E-l 

»  I ^ • --»..-•••l.1.1-... . , . . . . . * » »_. ^_. ^_„ M^^^m-^^—^.       •_.       lhj . t__ -   - - «• - 
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a"1"   tt>   =  /n + 1  j n + l> 

a jn>   = /n~ | n-l> 

The  end   result   is 

(E-5c; 

(E-5dj 

/ 
'fid) 

K f i  " ~ 7— 
"nuj 

* p   K3HB<xqx - p"7 BCJ f/Töf^-! - /nr«£,i+il 

+ I p~4 C,e /i(i-l) «£,1-2 -6 fi - /(i+l)(i+2)  6ff£+2 (E-6) 

A similar, chough lengthier, calculation yields "tf£t  Since the result has 
many terms, we give here only the lowest order term involving powers and 
products of CK  and BK^: 

^<fi " V7K _** Ui  öf^i-i  - /ITT 6f)i+1\ (E-7) 

• 

• 
1 

M 

• 

[ '               "  1 

' « 

y i 

E-2 

• 

• 
• 

1 

i u 

» •• •- --—1— 
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APPENDIX F 

ACOUSTIC MODE WAVE EQUATION APPROXIMATE SOLUTIONS 

The internal mode eigenvalues, Equation (25), are the effective potentials 
which determine the acoustic mode Born-Oppenheimer wave functions via Equation 
(22).  To obtain an approximate solution, expand the eigenvalues ef in powers of 
q up to quadratic terms.  This is a good approximation if the anharmonic 
corrections to the total Hamiltonian are small so that B,C«1.  Then, 

3c 

and 

__» . (s+I) CK • *uKqK 
iqK 2 

32e .  C C, 
 !_ a -hü)lc6<x -<••!) 

K   X 
3qK3qK 2 -fito0 

Thus, the equilibrium acoustic coordinates are 

(F-l) 

(F-2) 

q<s •(s+I) 
2 *uk 

and the effective potential is 

es * EsKs> */ A^K^-^S)2 

(F-3) 

(F-4) 

In Equation (F-4) we have ignored the off-diagonal quadratic terms since they are 
small under our previous assumptions.  These terms lead to mixing of the acoustic 
coordinates and subsequent modifications of the acoustic frequencies.  In terms 
of the variables q^ = q«. - qKS, the acoustic wave equation, Equation (22), 
becomes 

+ J« 'sn • Esn* sn 
(F-5) 

F-l 

 . • m^* , 
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where 

Js = (.S+ky**>0  -^IfnoKqK, CF-6) 

Thus the total energy eigenvalues are 

22   K+
-^K Esn " Js + (F-7) 

F-2 
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APPENDIX G 

APPROXIMATE TRANSITION RATE FORMULA 

We approximate the coefficients CK and BK^ using Equations (30) and (31) as 
our guide: 

f ß    / \3/2 
CK  = _i  (Z) (G-l) 

/N /^ u0  \
M, 

*<* -  2-  V\ (G-2) 
N U>D «^»o  \' 

We have denoted 1/2 f"(re) by ß.  The quantities fj and f2 are dimensionless 
numbers which we will later set to 1//3T and 2, respectively.  Substitute 
Equation (27) into (9e) and substitute the result into Equation (lib) to obtain 
the Huang-Rhys factor for a transition from state i to state f: 

So ' ^- ZJ <J 
2-nztD'i  k (G-3) 

D 

The sum contains N terms, so upon substituting Equation (G-l) into (G-3) we get 

Sr> = -        . 
(G-4) 

5o = if(f-i)2MMwj 

In the following, we set f=i+l.  Using Equations (28), (9e), (27), (G-l), (G-2), 
and (G-4) we obtain 

;2 

(G-5) 4|_2 1    (i + i)(2i + l)2   S0{*wD)2 Ü2     <1   +   (2i+l)SowD/(0oJ 
Vl/ uo      ' ' 

G-l 

-"    -*        :.-•.»....'-.   .* .   .     r -.,-.-   .    -     .     r -.,-•••,     T     T     ,    -—.—m_ _ _ 
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The second terra in curly brackets in Equation (G-5) arises from the second terra 
in Equation (28).  In our application, S0 is much less than one, therefore, we 
can omit the second term in Equation (28).  Similarly, we obtain 

|l4c,i+l,il  " 2(IiJ (i+l)(2i+l)2 So(ftoD)2 UD/co0 (G-6) 

2 S^.i+l.i S^»i+1,i ^  = 8(r) (i+1)(2i+1) S° (^D^2 »\>/"o    , 

I^^K.i+l.il  " 4fY   (i+D S0 («BD)2«UD/»0 (G-8 

Substituting Equation (G-5)-(G-8) into Equation (D-8) we obtain 

Fi+1 i(-i«o) =M1 (i+D(^D)2 — so |(2i+D2 [P+(P-S)2] 
\fl/ "*o    ' 

+ 4(2i+l)(P-S) + 4} (G-9) 

where P and S are defined in Equations (lOd) and (lOe).  If we now substitute 
Equation (G-9) into Equation (10), we obtain an expression for W(i+i+l) 
depending on T, üJ0, O)Q, and S0.  All the third order anharmonic coupling effects 
are condensed into the Huang-Rhys factor SQ. 

If S0«l and the temperature is not too large, we may simplify the result 
further.  The upper temperature limitation is determined by the condition x2«l 
where x is defined in Equation (lie).  Thus the condition is 

i ßf*i>D > arcsinh S0 = S0 (G-10) 

Rearranging (G-10) we obtain the condition 

T < TD/2S0 (G-ll) 

where Tn is the Debye temperature. Under this condition, S«l and P» |p| . If we 
set f£ • 2, f^ = 1//T, and Aß = up SQ/2, we obtain the result given in Equations 
(2, 2a, 2b). 

G-2 

. •• . W_J . . .   .  .. . . . . . .  -   -   -       ••-••    _  ^  •- . . ^ •• . 1. I « I 1 » t - ' -  . - - . - . • . ^ 
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APPENDIX H 

MOMENTS OF SPECTRAL BAND SHAPE FUNCTION 

The r'th moment of the distribution I(w) is defined by 

r J     I(o))o)r dw 
<ur> = —  (H-l) 
/OB 

)du> 

where I (a) is defined in Equation (34).  In order to evaluate <u)r> note 
that 

/ 

a)re"iut d<D = 2irir d^U) 
"dF1 (H-2) 

where 6(t)   is  the  Dirac  delta  function.     Thus 

/I(w)u>rdu>  = 2wir    /       eg(it)  dr6(t)  dt (R_3) 

After r  integrations by parts we obtain 

/Ku)urdw   =  2*  -JL-   re8
(it)| (H-A) 

d(it)r   L J  t=0 

From Equation (D-2) we note that g(0) = 0 so that 

<U) r> = (±1)r d_ej 

dz1 
(H-5) 

z=0 

The positive sign is for absorption and the negative sign is for emission. 

The average absorption or emission frequency is 

w   = <w> = rg'(0) = i (u)fi + I Aß) (H-6) 

H-l 

-^  - ._ _.  . . ^ 
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where 

Aß • >  ü)KA)C (H-7) 

K K 

For absorption,   let  <u0  • o)f£>0 and   for  emission  let iaQ  = -Wf£>0.     Then 

Ü = 0)o + I Afl (H-8) 

Thus, the Stokes parameter Aß is the difference between the mean absorption and 
emission frequency.  The second moment of. the distribution is 

a2=<(cü-ü)2> = g"(0) = I /wK coth (I önuie)A 

K 

and the third and fourth moments are 

3 2 

(H-9) 

<(ü)-ü)
3
> = i g'"(0) = ±.I2j u^A^ (H-10) 

K 

<(u)-ÖT)4> = g(4>(0) + 3[g"(0)]2 

• ±2^, *«  coth(^ «K^ic + 3[g"(0)]2 (H-ll) 
K 

Again, introducing an average acoustic frequency up, we can express the 
moments in terms of the Huang-Rhys factor: 

AO = 2S0ü)D (H-12) 

2 
o2 = wD S0 coth  (I ßffoon) (H-13) 

Y3   = «">-"> 3> =   |/§^  coth   (I BftUD) (H-14) 

1 

Y4 = <(w-u) > - 3 = [so coth (l  ßno)D)                         (H-15) 
o4        L       2     J 

j 
The skewness 73 and kurtosis Y4 are measures of the deviation from a gaussian 
distribution. 

H-2 

| 

i 1 

; \ 
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APPENDIX I 

DETERMINATION OF STOKES PARAMETER FROM BANDWIDTH 

A straightforward method of obtaining a distribution with a finite number 
of specified moments would be to take the product of a polynomial with the error 
function, choosing the coefficients of the polynomial appropriately. An 
equivalent, but easier, approach is to take a linear combination of the error 
function and its derivatives with appropriate coefficients: 

I(x) = V an$(n)(x) 

n=0 

where 

$(x) = exp j- I x2} //hi' 

Integrating by parts we obtain the formulas 

f    X2r  i(x)dx •ii£)jV I *** 
•i or      L-d (r-n)T 

(1-1) 

(1-2) 

(1-3) 

f    x2r+l I(x)dx = .(2r^l);y" f%n+l (1-4) 

If we wish l(x) to be a normalized distribution with zero mean, unit standard 
deviation, skewness Y3> an<* excess Y4> then, from Equations (1-3) and (1-4) we 
find that aQ = 1, a1 = 0, a2 = 0, a3 = -r3/6, and a^ = YA/24.  Thus 

I(x) = *(x) - ll   ^(3)(x) + 14 ^(4)(x) 
3i 4! 

(1-5) 

1-1 

^~ .! ^m . «__ - • - • - —. . . ». - I 1 1 • . •• > •   - . -   - - - " - ; 
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Now let x = (w-w)/a and substitute for o, Y3> and Y4 from Equations (H-13), 
(H-14), and (H-15).  If we then set I(x) • l(0)/2, we obtain an equation which 
can be solved numerically for S0, given (U-5T)/WD.  Another distribution, quoted 
by Lax (Reference 5, footnote p. 4) as being due to Edgeworth, includes a sixth 
derivative 

I(x) = *(x) = 13 • <3><x) + I**(4) (x) • 
4. 

10y: 

~5T 
(6)(X) (1-6) 

The distribution (1-6) provides a not significantly better match for the higher 
moments. 

1-2 
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APPENDIX J 

VALIDITY OF THE SADDLE POINT APPROXIMATION 

The saddle point approximation for the transition rate, outlined in Appendix 
D, is the first term in an asymptotic expansion in the sense defined by 
Poincare.    In order for the first term to be a good approximation to the 
integral, the second term must be much smaller.  The expansion for an integral 
of the form in Equation (D-l) has been worked out by Hoare for the case when the 
function g(z) and its derivatives are of the order of N where N is the asymptotic 
expansion parameter and is presumed large.    In our case, the relevant 
asymptotic parameter is p, defined in Equation (D-9a) in the average acoustic 
frequency approximation.  The ratio of the second term in the asymptotic 
expansion to the first term must be much less than one.  Using Hoare's result, 
we obtain 

,  g(4)(z)   5[g(3)(z )]2 

8 ' [g"(z0)]
2   3[g"(z0)]

3 

In the average acoustic frequency approximation, the derivatives of g are: 

,„ v       2n 
g^2n<>(z0) = ü>D P ; n > 1 (j_2) 

g(2n+l)(2o)  = WD P   ;  n>   1 (J-3) 

where P =y^2+x2.     Substituting  (J-2)  and   (J-3)  in  (J-l),  we get 

11l - i ill I « l (j-4) 8p '    3 \P 

^"^•Jeffreys, H. and Jeffreys, B. S., Methods of Mathematical Physics, 3rd ed. 
Cambridge University Press, 1956, c. 17. 

J-2 Hoare, M. R., J. Chem. Phys. 52_, 5695 (1970), 

J-l 

• - - - - - 
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From (J-4) we see that the second term in the expansion is less than L/12 the 
first term if |p| is greater than one, independently of the value of x 
[= SQ/sinh (Sfuii  /2).     We also see that the second term is less than 1/8 the 
first term if x is greater than one.  In fact the expansion is asymptotic in the 
parameter P so that the approximation becomes better if either x or p becomes 
large. 

I 
In the case of non-radiative transitions, |p|>l, so the criterion is 

satisfied whatever the value of SQ.  In fact Jpl»1 is required for the Born- 
Oppenheimer approximation to be valid. 

For radiative transitions, however, the saddle point approximation is not 
good.  For radiative transitions, 

p = - (iDf £ ± U )/li)j) (J-5) 

where the positive sign is for emission and the negative sign is for absorption 
at frequency u>.  The range of values of p which are of interest (that is, 
values corresponding to frequencies within the spectral band) is then 

Cl 
p - s0 ± 

AID 

2ui 
(J-6) 

1 

where Aw is the bandwidth.  Since S  typically is much less than one, both 
|p| and x will be much less than one so that condition (J-4) cannot be satisfied 
for values of p which correspond to frequencies lying within a spectral band. 

:-i li 

r4 

i H 

J-2 

J 

tm i -    - —   - - - - - - * 
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